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1 Introduction

We have developed a learning system that uses the well-known technique of Partial

Evaluation (PE) (Kahn 1984) to automatically generate the complete knowledge base for an

expert system diagnostician. PE is well suited to application areas with multiple problem

domains that share common lines of problem-solving reasoning, which can be specialized

with appropriate auxiliary information for a problem domain.

An important benefit of PE, as we use it, is that it eases the knowledge acquisition

bottleneck in expert system development. In our Learning Diagnostic Skills (LDS) system,

PE constructs an efficient diagnostic model for each given schematic from a general causal

model of power-supply failures. Because the general model is reused for each schematic,

knowledge acquisition for a new power supply is limited to adding features not already

covered by the general model. The use of PE compensates for the computational costs caused

by the generality of the initial knowledge and for the use of an expressive representation.

The report begins with a broad definition of PE. The relationship of PE to explanation-

based learning is pointed out, followed by a description of the application of PE to construct-

ing the specialized causal models that are employed in the performance of diagnosis in the

LDS system.

2 The Role of PE in Al

As noted in both (Kahn 1984) and (van Harmelen and B, u.1 1988), Partial Evaluation

has mainly been applied in programming environments in or,. co optimize programs by

generating compiled code from interpreted code, given a specification of the interpreter; this

is an efficient way to extend languages such as PROLOG. Doing so speeds up the procedural

part of a system. Our system uses PE as a key speed-up learning component in applications.

Learnling by Partial Evaluation, is not a common practice in machine learning.

Typically, machine learning methods employ declarative represntations of knowledge,

which can be utilized by interpreters for a variety of purposes. For example, declarative
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knowledge can be more readily examined to check completeness or consistency than can

procedurally encoded knowledge. We use PE on a declarative domain model to improve

run-time efficiency before a problem is solved.

The Partial Evaluation Problem

The technique of partial evaluation can be applied to problems of the following form:

Given: General problem-solving knowledge for an application area, and

Given: Auxiliary information about a domain of problems within the application area,

Generate: A limited and more efficient domain-specific set of problem-solving knowledge.

Partial evaluation performs symbolic execution of the general problem-solving knowledge.

This process restricts the range of values allowed for variables in the general knowledge

base according to the auxiliary information. Where possible, variables are replaced with

constants. The result is further processed to precompute values of constant expressions and

to eliminate redundancy. This produces domain knowledge that efficiently combines the

general and auxiliary knowledge.

The Relationship of PE to EBL

The methods of explanation-based generalization (EBL) and PE can be shown to be

equivalent (van Harmelen and Bundy 1988). In EBL, a completed problem-solving episode

initiates learning. Domain knowledge then guides the generalization of the problem solution.

This learning can also be seen as specializing the knowledge used in constructing an explana-

tion of the problem solution, though this viewpoint is seldom used explicitly. Compared with

applying the learning algorithm to all available data beforehand, using problem instances to

trigger learning reduces the creation of specialized knowledge that is unlikely to be used. An

accepted heuristic is that previously needed knowledge is most likely to be needed again.

Likewise, in applying PE, problem-solving episodes trigger learning in such a way that

no effort is expended on irrelevant knowledge. The natural viewpoint for PE is that general

knowledge is speialized. Unlike EBL, PE is applied to a fragment of the general knowledge
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when problem solving first tries to access it. The specialized knowledge is then constructed

and used in solving the triggering problem.

Both EBL and PE only generate speed-up improvements in system performance. The

deductive closure (Dietterich 1986) of the knowledge in the system is unchanged.

3 Learning in the LDS System

The LDS system demonstrates the use of PE for learning in the application area of power

supply diagnosis. A specialized domain is the diagnosis of failures for a particular power sup-

ply design. The general problem-solving knowledge covers standard (non-switching) power

supplies. Figure 1 shows that there is no data feedback to the learning system from the

performance system, an abduction diagnostician. The output of the learning system is a

domain-specific causal model (SCM). The source of knowledge enabling the use of PE for

learning is the general causal model (GCM). Currently, the annotated circuit schematic is

entered by hand. It will be derived automatically from the basic circuit schematic when

structure recognition, shaded in Figure 1, is implemented. As detailed later in this section,

PE constructs enough of the SCM so that LDS can present a menu of possible "present-

ing" or initially observable symptoms to the user; PE then constructs branches of the SCM

as required by abduction diagnosis. LDS has been applied to three distinct power supply

schematics of increasing complexity.

The implemented learning and performance systems are planned to be part of a larger sys-

tem that incorporates Case-based Reasoning (CBR), shaded at the bottom of Figure 1. We

expect to demonstrate, by Case-based Reasoning, the acquisition of diagnostic skill in select-

ing the best next measurement to make while diagnosing a circuit, and to learn how to "jump

to conclusions" when expectations warrant it. LDS will try to solve each problem by CBR be-

fore "Falling back" to abduction diagnosis, which inherits its measurement ordering from the

GCM. Further discussion of structure recognition and CBR is beyond the scope of this report.

Before describing the learning component, we give a brief overview of abduction diagnosis

and the required circuit-specific causal model of failures. This model is the end product that
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must result from learning. The makeup of the GCM is then reviewed and the generation of

the SCM by PE is explained.

The LDS Performance System

LDS uses an abduction algorithm to explain what repair is needed, given the observable

failure symptoms and values for the measurements that have been requested. The domain-

specific causal model (SCM) in LDS is based on the representation used in ABEL (Patil

1981a, 1981b). This is a network where hypotheses are linked by causal relationships and

have "down" links to levels of greater detail. An explanation is a path through the causal

model that has a presenting symptom at its head; each step along the path gives either a

causal reason or greater detail explaining the preceding node. For a successful diagnosis, all

tests along the path are satisfied and the path terminates at one or more events representing

repairable causes.

Abduction diagnosis proceeds in a recursive cycle to find a successful explanatory path in

the SCM, starting with hypotheses causally linked to the observable symptoms. The cycle

considers hypotheses in turn in order to explain the current question. Any associated tests

that may confirm or deny the hypothesis under consideration are measured. Then, if the

hypothesis is still viable, the cycle runs recursively until a terminating cause is reached. If no

questions remain, the current path represents a diagnosis of the failure. When a hypothesis

is falsified or leads to an inconsistent explanation, backtracking allows the exploration of

alternative choices for earlier parts of the explanation.

An efficient SCM has branches for each failure of the device. We show one branch in

Figure 2. A complete SCM is a large structure because each component and functional

aggregation of components in the device must be named in specific hypotheses about poten-

tial failures. Likewise, a large number of tests are needed to rapidly prune branches during

abduction. It is a tedious task to write complete SCMs for a large number of similar devices

- a task we avoid by applying PE to a general causal model and to each circuit schematic.
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High-Output-Voltage Causes Regulator-Short
REG+8.9VDC REG-1

Down 4
Zener-Regulator-Short

Z-REG-I

Voltage-Regulation-Transistor-Short Zener-Diode-Open
Q701 D702

Figure 2: Specific causal model portion for a regulated power supply

High-Output-Voltage _ Causes Regulator-Short
observable-event event

Down I

Zener-Regulator-Short
event

Do ownll

Voltage-Regulation-Transistor-Short Zener-Diode-Open
event event

Figure 3: General causal model portion for power supplies

Partial Evaluation in LDS

Currently, LDS starts with the general causal model (GCM) and the annotated circuit

schematic. Figure 3 shows the structure of a small portion of a GCM constructed for power

supplies. This takes the form of a generalized SCM, with variables replacing component and

functional block names. Associated with each node of the GCM is a locator pattern that PE

uses in finding valid values for a node's variable when those values are matched against a given

annotated circuit schematic. Figure 4 shows a locator pattern for a High-Output-Voltage

presenting symptom. LOOM (MacGregor 1988), the knowledge representation language we

use, provides support for this pattern matching.
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A High-Output-Voltage observable event can happen for any X:

that is a Power-Supply output port,
that is not Ground, and
there is some Voltage-Regulator

with some Part on

the Signal-Path before X

Figure 4: High-Output-Voltage observable event locator pattern

Figure 5 shows an annotated circuit diagram, the eventual output of a structured-object

recognition component, for the circuit shown in Figure 6. Figure 5 leaves out the connec-

tions for clarity; the actual data contains all the connections at the base component level and

between higher level functional blocks. The annotated circuit schematic adds several layers

of functional blocks to the component level represented in the original circrit diagram. Sup-

plying the annotation by hand is straightforward, as long as the device is easily represented

by block diagrams that characterize the functions that are subject to failure.

Generating the Specific Causal Model

Before the performance system is used, the specific causal model is initialized from GCM

nodes representing presenting symptoms. For each match of the GCM node's locator pattern

(such as the one in Figure 4) in the annotated circuit schematic, a new SCM node is created.

In the example of Figures 5 and 6, there are multiple instances of voltage-regulated output

ports, so for each such instance, an SCM instance of High-Output-Voltage for that port

is generated. The measurement associated with each new node is instantiated with the

corresponding nominal voltage from the annotated circuit diagram. The remainder of the

SCM generation process takes place during performance.

At run time, missing SCM branches are generated, and the measurement values fur-

nished by a technician or automated test equipment determine the path towards a final

diagnosis - a path from the observable symptom to a terminating node. The first time a

user selects a presenting symptom, abduction diagnosis asks for all the causal links to that

symptom, triggering the learning system to go deeper into the GCM to create SCM nodes
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A Regulator-Short event can happen for any X:

where X is a voltage-regulator

with some Part on

the Signal-Path preceding

the object of the High-Output-Vultage event

Figure 7: Regulator short locator pattern

for each. causal branch leading to that presenting symptim. Figure 3 shows the portion of

the GCM in which one cause of the observed symptom High-Output-Voltage is found to

be a Regulator-Short. The locator pattern stored at that node of the GCM is shown in

Figure 7. Once again, this pattern is used to search the annotated circuit schematic for

matches. Each voltage regulator that matches the pattern has its own SCM node created.

Proceeding in this way, the structure of the GCM is imitated to create the SCM, including

measurements that confirm or deny causal hypotheses. The constructed portion of the SCM

is stored Lor future use.

4 Benefits of Partial Evaluation

Benefits of PE accrue in three ways.

1. PE exhibits the greatest efficiency gain when the final subset of problems solved by the

limited model is relatively small compared to the scope of the original domain model.

This is the case when the constructed knowledge will be much more specialized than

the general knowledge.

2. The gain in problem-solving efficiency occurs for each problem solvable by the con-

structed model. In tradeoff with the previous benefit, a !arger subset of problems

covered by the specialized knowledge yields more aggregate benefit.

3. Whci, many speciali7ed models are needed (that draw on similar, overlapping, general

model knowledge), PE's reuse of the general model decreases the amount of expert

input needed per specialized model. Any knowledge encoded in the general model so
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as to allow PE to apply it to more than one specialized domain need only be entered

once into the general model.

We illustrate these three benefits with our example in the domain of electrical power

supply diagnosis. All power supplies that output direct current, given an alternating current

input, have much in common. There are just a few fundamental designs that are varied

to meet particular ,-)ecifications for the basic functions of the power supply. Thus, it is

possible to write a general domain model for power supply diagnosis. This general model

is expensive to use directly for diagnosis because of the processing required to account for

the generalized representation of circuit structures. PE uses the schematic for a particular

power supply as auxiliary information in order to create an efficient, circuit-specific model

from the general model.

The benefit of using PE and storing an efficient model for each power supply circuit is

quite large. The three benefits of PE apply as follows:

1. The causal model specific to a particular design that is output by PE is much more

specialized than the general model that covers all power supplies. This large amount

of specialization indicates a great reduction in the amount of computation required

during a diagnosis.

2. Each constructed model sees a lot of use because, typically, a large number of units are

made for a particular power supply design, and power supplies are notoriously prone

to frequent failures.

3. The large amount of reuse of the general knowledge for power supply diagnosis, mui-

tiplied by the large number of distinct designs, clearly shows the potential savings of

using PE over separately implementing a diagnostic system for each design. For a new

power supply, only those features that are not already represented in the general model

require additional expert knowledge. Knowledge added to the general model accumu-

lates to become available for other circuit designs with similar structural or functional

features. Note that it is a relatively simple task to obtain a machine representation of

a power supply schematic.

10



5 Summary

The use of Partial Evaluation in LDS allows the generation of multiple expert diagnos-

ticians from a single, general causal model. The input of a circuit schematic in annotated

form provides sufficient information for partial evaluation to generate the specific causal

model to be used for diagnosis. The inclusion of structured-object recognition in our system

will automate the total process of generating a diagnostician when a circuit schematic in a

conventional form, such as that produced by a CAD system, is input.

Although formally equivalent to explanation-based generalization, our method works

from general models towards specific solutions in PE, rather than generalizing. Since the

GCM needs to be acquired only once (in theory) and the results are applicable to many

devices, the knowledge engineering effort is greatly reduced when compared with conventional

techniques for generating expert systems. PE eliminates the efficiency loss caused by the use

of a general representation by constructing of useful branches of the SCM.

In addition to diagnostics, we speculate that text understanding and intelligent interface

systems can benefit from using PE. In a paraphrasing or question-answering task, general

knowledge would be specialized to explain the input text. In intelligent interfaces, an array

of general interfacing methods would be specialized by PE to meet the needs of each system

to be integrated.

We recognize that because our general model contains no statistical knowledge, the re-

sulting expert is really a novice, albeit an "educated" one. Due to this lack, the performance

system may explore unlikely paths before hitting on the correct one. When we incorporate

Case-based Reasoning, the novice can gather its own statistics automatically and gain skill

in diagnosing each specific device. We are at present engaged in this enterprise.
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